3.261 \(\int x^3 (a+b x^3+c x^6)^p \, dx\)

Optimal. Leaf size=138 \[ \frac{1}{4} x^4 \left (\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1\right )^{-p} \left (\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac{4}{3};-p,-p;\frac{7}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right ) \]

[Out]

(x^4*(a + b*x^3 + c*x^6)^p*AppellF1[4/3, -p, -p, 7/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^3)/(b + Sqrt
[b^2 - 4*a*c])])/(4*(1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0909034, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {1385, 510} \[ \frac{1}{4} x^4 \left (\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1\right )^{-p} \left (\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac{4}{3};-p,-p;\frac{7}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*x^3 + c*x^6)^p,x]

[Out]

(x^4*(a + b*x^3 + c*x^6)^p*AppellF1[4/3, -p, -p, 7/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^3)/(b + Sqrt
[b^2 - 4*a*c])])/(4*(1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]))^p)

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int x^3 \left (a+b x^3+c x^6\right )^p \, dx &=\left (\left (1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )^{-p} \left (a+b x^3+c x^6\right )^p\right ) \int x^3 \left (1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )^p \left (1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )^p \, dx\\ &=\frac{1}{4} x^4 \left (1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac{4}{3};-p,-p;\frac{7}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.182851, size = 166, normalized size = 1.2 \[ \frac{1}{4} x^4 \left (\frac{-\sqrt{b^2-4 a c}+b+2 c x^3}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (\frac{\sqrt{b^2-4 a c}+b+2 c x^3}{\sqrt{b^2-4 a c}+b}\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac{4}{3};-p,-p;\frac{7}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}},\frac{2 c x^3}{\sqrt{b^2-4 a c}-b}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3*(a + b*x^3 + c*x^6)^p,x]

[Out]

(x^4*(a + b*x^3 + c*x^6)^p*AppellF1[4/3, -p, -p, 7/3, (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^3)/(-b + Sqrt
[b^2 - 4*a*c])])/(4*((b - Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]))^p*((b + Sqrt[b^2 - 4*a*c] + 2*
c*x^3)/(b + Sqrt[b^2 - 4*a*c]))^p)

________________________________________________________________________________________

Maple [F]  time = 0.022, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( c{x}^{6}+b{x}^{3}+a \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(c*x^6+b*x^3+a)^p,x)

[Out]

int(x^3*(c*x^6+b*x^3+a)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{6} + b x^{3} + a\right )}^{p} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^6+b*x^3+a)^p,x, algorithm="maxima")

[Out]

integrate((c*x^6 + b*x^3 + a)^p*x^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c x^{6} + b x^{3} + a\right )}^{p} x^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^6+b*x^3+a)^p,x, algorithm="fricas")

[Out]

integral((c*x^6 + b*x^3 + a)^p*x^3, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(c*x**6+b*x**3+a)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{6} + b x^{3} + a\right )}^{p} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^6+b*x^3+a)^p,x, algorithm="giac")

[Out]

integrate((c*x^6 + b*x^3 + a)^p*x^3, x)